Peramalan Kecelakaan Lalu lintas di Kabupaten Blitar menggunakan Single Exponential Smoothing

The Forecasting of Traffic Accidents in Blitar Regency using Single Exponential Smoothing

Ewing Rudita Arini*1, Vita Dewi Islami2, Meyra Wahyu Wulandari3

^{1,2,3} Program Studi Matematika, Fakultas Ilmu Eksakta, Universitas Nahdlatul Ulama Blitar e-mail: ¹ewingrarini@gmail.com, ²vitadewislami@gmail.com

Abstrak

Kecelakaan lalu lintas adalah peristiwa yang tidak dapat dihindarkan. Peristiwa ini bisa terjadi diantaranya karena kondisi jalan yang rusak, ketidaklayakan kendaraan maupun kesadaran berlalulintas yang kurang. Penelitian ini bertujuan untuk meramalkan jumlah kecelakaan lalu lintas di Kabupaten Blitar. Data jumlah kecelakaan lalu lintas periode Januari 2022 sampai Januari 2025 tidak memiliki tren atau musiman sehingga metode Single Exponential Smoothing cocok digunakan. Dari hasil pehitungan diperoleh nilai kesalahan peramalan terkecil menggunakan MAD dan MAPE berturut-turut 0,6525 dan 18,83% untuk nilai parameter α =0,1. Hasil peramalan untuk periode bulan Februari 2025 adalah 38 kasus. Hasil peramalan ini diharapkan memberikan masukan yang tepat bagi instansi terkait untuk menekan atau menurunkan jumlah kecelakaan lalu lintas.

Kata Kunci: Kecelakaan Lalu lintas, Kabupaten Blitar, Single Exponential Smoothing

Abstrack

Traffic accidents are unavoidable events. This incident can occur among to damaged road conditions, vehicle unfitness or lack of traffic awareness. This study aims to estimate the number of traffic accidents in Blitar Regency. Traffic accident data from January 2022 to January 2025 has no trend or seasonality, so the Single Exponential Smoothing method is suitable. The calculation results the smallest estimated error values using MAD and MAPE were obtained, respectively 0.6525 and 18.83% for parameter value $\alpha=0.1$. The forecast results for February 2025 are 38 cases. The results of this forecast are expected to provide appropriate input for related agencies to suppress or reduce the number of traffic accidents.

Keywords: Traffic Accidents, Blitar Regency, Single Exponential Smoothing

PENDAHULUAN

Kecelakaan lalu lintas merupakan peristiwa di jalan yang tidak direncanakan dan tidak terduga yang melibatkan kendaraan baik dengan atau tanpa pengguna jalan lain, serta menyebabkan korban jiwa atau kerugian material [9]. Kemungkinan terjadinya kecelakaan lalu lintas dikarenakan faktor lingkungan, kendaraan, dan manusia [6]. Kecelakaan terutama disebabkan oleh pengguna jalan meskipun juga bisa diakibatkan kondisi jalan dan kesesuaian kendaraan. Perawatan kendaraan secara rutin dan kesadaran pengguna jalan yang baik dapat menurunkan peluang terjadinya kecelakaan. Kendaraan yang tidak memenuhi syarat, faktor fisik jalan seperti jalan berlubang serta kondisi cuaca juga dapat penyebab terjadinya kecelakaan.

Kabupaten Blitar adalah salah satu Kabupaten di Jawa Timur. Jumlah kecelakaan lalu lintas di Kabupaten Blitar tahun 2022 sebanyak 412 kasus dengan jumlah korban sebanyak 605 jiwa terdiri dari 484 luka ringan, 14 luka berat dan 107 meninggal dunia [7]. Pada tahun 2023, terjadi 487 kecelakaan lalu lintas dengan 724 korban. Dengan demikian, ada peningkatan jumlah kecelakaan lalu lintas dan korbannya. Faktor manusia yang menjadi penyebab utama kecelakaan lalu lintas tahun 2022 dan 2023 adalah faktor manusia.

Peramalan merupakan metode statistika yang digunakan dalam mempertimbangkan pengambilan keputusan berdasarkan hasil prediksi [3]. Salah satu yang menjadi ukuran apakah metode peramalan sudah tepat digunakan adalah akurasi peramalan atau selisih data aktual dengan data hasil peramalan. Perbedaan pola data dan kejadian yang menyertai menjadi penyebab model peramalan tidak dapat digunakan dalam jangka waktu yang lama. Metode

History of article: Received: Mei, 2025 : Accepted: Juni, 2025

Single Exponetial Smoothing adalah salah satu metode dalam peramalan. Metode ini dipakai untuk peramalan jangka pendek [10]. Model pada metode ini berfluktuasi disekitar nilai ratarata, tanpa tren dan pola musiman. Metode ini mampu mengurangi penyimpangan data karena tidak memerlukan penyimpanan semua data historis.

Penelitian dengan menerapkan metode Single Exponential Smoothing sudah pernah dilakukan sebelumnya. Metode SES dapat meramalkan tingkat pengganguran terbuka di Indonesia tahun 2007 sampai 2022 [8]. Pada penelitian ini diperoleh nilai MAPE terkecil 8,22% untuk nilai parameter α =0,9 yang artinya metode ini memiliki akurasi yang tinggi. Penelitian lain dilakukan oleh [2], metode SES dapat digunakan untuk meramalkan data total produksi ikan layur di desa Branta Pamekasan pada bulan Januari tahun 2022 hingga bulan September tahun 2023. Metode Single Exponential Smoothing menunjukkan hasil yang memuaskan dalam memprediksi produksi hasil tangkapan ikan layur dengan nilai ramalan untuk bulan Oktober sebesar 43934.18 dengan penggunaan Alpha 0,588152321, serta nilai error berturut-turut dari MAD sebesar 9291,11 dan MAPE sebesar 23,615

Berdasarkan uraian diatas, adapun tujuan dari penelitian ini ialah untuk meramalkan jumlah kecelakaan lalu lintas di Kabupaten Blitar menggunakan metode Single Exponential Smoothing. Ketepatan prediksi yang digunakan adalah MAD (Mean Absolut Deviation) dan MAPE (Mean Absolute Percentage Error). Dari hasil perhitungan ketepatan prediksi tersebut akan dicari tingkat kesalahan terkecil dan meramalkan jumlah kecelakaan lalu lintas untuk bulan berikutnya. Penelitian ini diharapkan mampu membantu dan memberikan masukan kepada masyarakat dan instansi terkait pentingnya kesadaran berlalulintas untuk mengurangi angka kecelakaan lalu lintas.

METODE PENELITIAN

Metode Exponential Smoothing adalah pengembangan dari metode Weighted Moving Average. Metode ini menggunakan parameter pemulusan yang berfungsi untuk memperhalus model peramalan. Nilai parameter pemulusan berada diantara 0 sampai dengan 1. Pada metode Single Exponential Smoothing, penghalus digunakan satu kali. **Persamaan** (1) berikut adalah persamaan matematis untuk metode Single Exponential Smoothing[3]

$$F_{t} = (1 - \alpha)F_{t-1} + \alpha X_{t-1}$$
dengan (1)

F₊: hasil peramalan periode sekarang (periode ke t)

 F_{t-1} : hasil peramalan periode sebelumnya (periode ke t-1)

 α : parameter pemulusan level, $0 \le \alpha \le 1$

 X_{t-1} : data aktual periode sebelumnya (periode ke t-1)

Untuk nilai awal pada metode ini adalah

$$F_1 = X_1$$

Jumlah kesalahan dalam peramalan tidak bisa dijadikan ukuran yang akurat dalam menilai seberapa efektif metode peramalan yang diterapkan Hartini dalam [4]. Ketepatan prediksi digunakan untuk mengukur seberapa cocok atau sesuai antara data aktual dengan data hasil peramalan. Berikut ini beberapa alternatif untuk menghitung tingkat kesalahan peramalan:

1. Mean Absolut Deviation (MAD)

Metode ini digunakan untuk mengukur ketepatan ramalan dengan menghitung ratarata kesalahan dugaan atau nilai absolut setiap kesalahan [1]. Rumus untuk menghitung MAD ditunjukan pada **persamaan (2)** berikut

$$MAD = \frac{\sum_{t=1}^{n} |X_t - F_t|}{n}$$
 (2)

dengan:

X. : data aktual saat t

F_t: data hasil peramalan saat t

n : jumlah data

2. Mean Absolute Percentage Error (MAPE)

Metode ini memberikan tingkat kesalahan (selisih antara nilai aktual dengan nilai peramalan) yang kecil [5]. Semakin kecil nilai MAPE maka peramalan semakin baik. Jika nilai MAPE kurang dari 10 persen maka kemampuan peramalan sangat baik dan jika nilai MAPE diantara 10 sampai 20 persen maka kemampuan peramalan baik. Perhitungan MAPE dapat dilihat pada **persamaan** (3) berikut

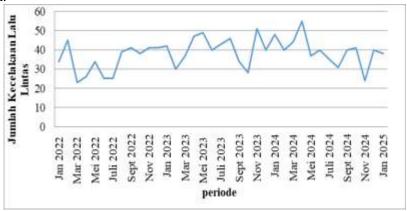
$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{X_t - F_t}{X_t} \right| \times 100\%$$
(3)

dengan:

X_t : nilai aktual
 F_t : nilai ramalan
 n : jumlah data

HASIL DAN PEMBAHASAN

Penelitian ini menggunakan data sekunder yang diperoleh dari [7]. Data yang digunakan adalah jumlah kecelakaan lalu lintas di Kabupaten Blitar sebanyak 37 data mulai bulan Januari 2022 sampai dengan Januari 2025. Adapun data disajikan pada **Tabel 1** di bawah ini


Tabel 1. Data Jumlah Kecelakaan Lalu lintas di Kabupaten Blitar

No.	Periode	Jumlah Kasus
1	Januari 2022	34
2	Februari 2022	45
3	Maret 2022	23
4	April 2022	26
5	Mei 2022	34
6	Juni 2022	25
7	Juli 2022	25
8	Agustus 2022	39
9	September 2022	41
10	Oktober 2022	38
11	November 2022	41
12	Desember 2022	41
13	Januari 2023	42
14	Februari 2023	30
15	Maret 2023	37
16	April 2023	47
17	Mei 2023	49
18	Juni 2023	40
19	Juli 2023	43
20	Agustus 2023	46
21	September 2023	34
22	Oktober 2023	28
23	November 2023	51
24	Desember 2023	40
25	Januari 2024	48
26	Februari 2024	40
27	Maret 2024	44
28	April 2024	55
29	Mei 2024	37

JSNu: Journal of Science Nusantara: 58-64

30	Juni 2024	40
31	Juli 2024	35
32	Agustus 2024	31
33	September 2024	40
34	Oktober 2024	41
35	November 2024	24
36	Desember 2024	40
37	Januari 2025	38

Langkah selanjutnya adalah menggambar grafik untuk melihat apakah data mempunyai tren atau musiman.

Gambar 1. Plot data Kecelakaan Lalu lintas

Pada **Gambar 1** di atas, grafik jumlah kecelakaan lalu lintas tidak memiliki tren atau musiman sehingga metode yang cocok untuk penelitian ini adalah metode Single Exponential Smoothing. Dalam mengolah data di atas, nilai α yang akan digunakan memiliki selisih 0,1 yaitu 0.1; 0.2; ...; 0.9. Dengan demikian, akan ada 9 pengamatan yang dilakukan untuk nilai α yang berbeda. Berikut ini adalah hasil perhitungan untuk $\alpha = 0,1$:

Untuk t = 1 (Januari 2022)
$$F_1 = X_1 = 34$$
 Untuk t = 2 (Februari 2022)
$$F_2 = (1 - 0.1)F_{2-1} + 0.1 * X_{2-1} = 0.9 * 34 + 0.1 * 34 = 34$$
 Untuk t = 3 (Maret 2022)
$$F_3 = (1 - 0.1)F_{3-1} + 0.1 * X_{3-1} = 0.9 * 34 + 0.1 * 45 = 35.1$$
 Untuk t = 4 (April 2022)
$$F_4 = (1 - 0.1)F_{4-1} + 0.1 * X_{4-1} = 0.9 * 35.1 + 0.1 * 23 = 33.89$$

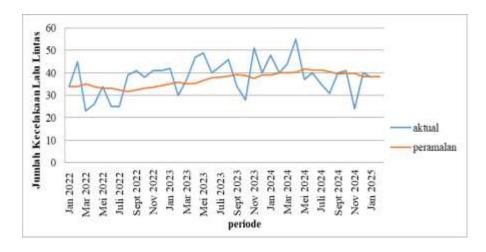
Dengan cara yang sama maka akan diperoleh hasil pada Tabel 2 berikut

Tabel 2. Perhitungan Single Exponetial Smoothing untuk $\alpha = 0, 1$

		0 0	r		
No.	Periode	Nilai Aktual (<mark>X_t)</mark>	Hasil Peramalan (F _t)	$ \mathbf{X_t} - \mathbf{F_t} $	$\left \frac{X_t - F_t}{X_t}\right $
1	Januari 2022	34			
2	Februari 2022	45	34,000	11,000	0,244
3	Maret 2022	23	35,100	12,100	0,526
4	April 2022	26	33,890	7,890	0,303
5	Mei 2022	34	33,101	0,899	0,026
6	Juni 2022	25	33,191	8,191	0,328
7	Juli 2022	25	32,372	7,372	0,295
8	Agustus 2022	39	31,635	7,365	0,189
9	September 2022	41	32,371	8,629	0,210
10	Oktober 2022	38	33,234	4,766	0,125
11	November 2022	41	33,711	7,289	0,178

12	Desember 2022	41	34,440	6,560	0,160
13	Januari 2023	42	35,096	6,904	0,164
14	Februari 2023	30	35,786	5,786	0,193
15	Maret 2023	37	35,207	1,793	0,048
16	April 2023	47	35,387	11,613	0,247
17	Mei 2023	49	36,548	12,452	0,254
18	Juni 2023	40	37,793	2,207	0,055
19	Juli 2023	43	38,014	4,986	0,116
20	Agustus 2023	46	38,513	7,487	0,163
21	September 2023	34	39,261	5,261	0,155
22	Oktober 2023	28	38,735	10,735	0,383
23	November 2023	51	37,662	13,338	0,262
24	Desember 2023	40	38,995	1,005	0,025
25	Januari 2024	48	39,096	8,904	0,186
26	Februari 2024	40	39,986	0,014	0,000
27	Maret 2024	44	39,988	4,012	0,091
28	April 2024	55	40,389	14,611	0,266
29	Mei 2024	37	41,850	4,850	0,131
30	Juni 2024	40	41,365	1,365	0,034
31	Juli 2024	35	41,229	6,229	0,178
32	Agustus 2024	31	40,606	9,606	0,310
33	September 2024	40	39,645	0,355	0,009
34	Oktober 2024	41	39,681	1,319	0,032
35	November 2024	24	39,813	15,813	0,659
36	Desember 2024	40	38,231	1,769	0,044
37	Januari 2025	38	38,408	0,408	37,592

Langkah selanjutnya, menghitung ketepatan prediksi menggunakan MAD dan MAPE


MAD =
$$\frac{\sum_{t=1}^{n} |X_t - F_t|}{n}$$
 = 6,525
MAPE = $\frac{1}{n} \sum_{t=1}^{n} \left| \frac{X_t - F_t}{X_t} \right| \times 100\% = 18,83\%$

Berikut ini adalah nilai MAD dan MAPE untuk setiap nilai α

Tabel 3. Perhitungan Nilai MAD dan MAPE untuk Setiap Nilai α

No.	α	MAD	MAPE
1	0,1	6,525	18,83%
2	0,3	6,657	18,97%
3	0,2	6,529	19,07%
4	0,4	6,751	19,20%
5	0,5	6,835	19,40%
6	0,6	6,925	20,03%
7	0,8	7,193	20,28%
8	0,7	7,069	20,44%
9	0,9	7,440	20,95%

Dari pengamatan pada **Tabel 3** di atas dapat disimpulkan nilai tingkat kesalahan terkecil menggunakan MAD dan MAPE berturut-turut 0,6525 dan 18,83% untuk $\alpha = 0,1$. Plot data untuk $\alpha = 0,1$ dapat ditunjukan pada **Gambar 2** berikut

Gambar 2. Plot data untuk $\alpha = 0, 1$

Berdasarkan hasil perhitungan di atas, selanjutnya akan dilakukan perhitungan untuk meramalkan jumlah kecelakaan lalu lintas untuk periode bulan Februari 2025 sebagai berikut

$$F_{38} = (1 - 0.1)F_{38-1} + 0.1 * X_{38-1}$$

$$= 0.9 * 38,408 + 0.1 * 38$$

$$= 38,367$$

$$\approx 38$$

Pada perhitungan di atas disimpulkan bahwa jumlah kecelakaan lalu lintas untuk bulan Februari 2025 sama dengan jumlah kecelakaan pada bulan sebelumnya (Januari 2025). Dengan adanya hasil peramalan ini, diharapkan mampu memberikan masukan bagi instansi terkait dan masyarakat akan kesadaran dalam berlalulintas sehingga mampu mengurangi julah kecelakaan lalu lintas di Kabupaten Blitar.

KESIMPULAN

Data jumlah kecelakaan lalu lintas tidak memiliki tren atau musiman sehingga metode Single Exponential Smoothing cocok digunakan. Dari hasil pehitungan diperoleh nilai kesalahan peramalan terkecil menggunakan MAD dan MAPE berturut-turut 0,6525 dan 18,83% untuk nilai parameter α =0,1. Hasil peramalan untuk periode bulan Februari 2025 adalah 38 kasus. Hasil peramalan ini diharapkan memberikan masukan yang tepat bagi instansi terkait untuk menekan atau menurunkan julah kecelakaan lalu lintas.

DAFTAR PUSTAKA

- [1] A. K. Azis, Kustanto, "Penerapan Moving Average Pada Prediksi Penjualan Accu", Jurnal TIKomSiN, vol. 11, no.1, pp: 25-34, 2023, doi: http://dx.doi.org/10.30646/tikomsin.v11i1.722
- [2] I. Banat, Faisol, P. Wirananda, "Perbandingan Metode Exponential Smoothing dalam Memprediksi Jumlah Produksi Ikan Layur di Pamekasan", Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT), vol. 3, no.2, pp: 197-207, 2024, doi: https://doi.org/10.55826/jtmit.v3i2.359
- [3] Khoiri, H. A., Analisis Deret Waktu Univariat Teori dan Pengolahan Data, 2023, UNIPMA Press, Madiun.
- [4] M. H. Hamirsa, R. Rumita, "Usulan Perencanaan Peramalan (Forecasting) Dan Safety Stock Persediaan Spare Part Busi Champion Type RA7YC-2 (EV 01/EW-01/2) Menggunakan Metode Time Series Pada Pt Triangle Motorindo Semarang", Industrial Engineering Online Journal, vol. 11, no.1, pp: 1-10, 2022, https://ejournal3.undip.ac.id/index.php/ieoj/article/view/34373

[5] N. Kurnia, "Penerapan Peramalan Penjualan Sembako Menggunakan Metode Single Moving Average (Studi Kasus Toko Kelontong Dedeh Retail)", Jurnal Ilmiah Wahana Pendidikan, vol. 8, no.17, pp: 307-316, 2022, doi: https://doi.org/10.5281/zenodo.7076573

- [6] N. Susanti, C. T. D. E. Angkat, D. A. Pohan, M. Nasution, "Analisis Faktor Faktor yang Berhubungan Dengan Resiko Kecelakaan Lalu Lintas", Jurnal Kesehatan Tambusai, vol. 5, no.2, pp: 5423-5429, 2024, doi: https://doi.org/10.31004/jkt.v5i2.28875
- [7] Pusiknas Bareskrim Polri, "Laka Lantas", https://pusiknas.polri.go.id/laka_lantas, diakses tanggal 10 Februari 2025 pukul 09.00
- [8] R. Maulina, D. P. Anggraeni, "Metode Single Exponential Smoothing (SES) pada Peramalan Tingkat Pengangguran Terbuka di Indonesia", Evolusi: Journal of Mathematics and Sciences, vol. 6, no.2, pp: 111-120, 2022, doi: https://doi.org/10.51673/evolusi.v6i2.1335
- [9] R. F. Siregar, N. Paisah, A. Pakpahan, "Analisis Kecelakaan Lalu Lintas (Black Site) Pada Ruas Jalan H.T. Rizal Nurdinkota Padangsidimpuan", Statika, vol. 5, no.1, pp: 14-30, 2022, doi: https://doi.org/10.64168/statika.v5i1.907
- [10] Y. Utami, D. Vinsensia, P. M. Rasmanna, "Analisis Eksponensial Smoothing dalam Meramalkan Penjualan Jumlah Produk", Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), Vol. 23, No. 2, pp: 461-468, 2024, doi: https://doi.org/10.53513/jis.v23i2.10005