Efek Suplementasi Tepung Semangka terhadap Kualitas Interior Telur Ayam Kampung

Effect of Watermelon Flour Supplementation on Interior Quality of Native Chicken Eggs

Syafina Syafi'ina¹, Nining Haryuni*², Anna Lidyawati² dan Lestariningsih²

¹ Mahasiswa Program Studi Peternakan, Fakultas Ilmu Eksakta, Universitas Nahdlatul Ulama Blitar ² Dosen Program Studi Peternakan, Fakultas Ilmu Eksakta, Universitas Nahdlatul Ulama Blitar Correspondence author email: niningharyuni@gmail.com

Abstrak

Penelitian dilakukan dengan tujuan mengetahui efek suplementasi tepung biji semangka terhadap kualitas interior telur ayam kampung. Penelitian biologis ini dilakukan dengan menggunakan (RAL) Rancangan Acak Lengkap dengan perlakuan dosis suplementasi sebanyak 4 (0; 0,50; 0,75 dan 1,00%) dan ulangan sebanyak 5 kali ulangan dimana untuk setiap perlakuan menggunakan 5 ekor ayam. Analisis statistik menunjukkan bahwa suplementasi tepung biji semangka sangat nyata (p<0,01) memberikan pengaruh terhadap IKT dan tinggi putih telur tetapi tidak nyata (p>0,05) pengaruhnya terhadap indeks telur. Rata-rata indeks telur dalam penelitian ini adalah 77,19-80,31; IKT 0,35-0,45 dan tinggi putih telur 6.43-8,20mm. Penelitian ini dapat disimpulkan bahwa suplementasi tepung biji semangka dapat meningkatkan kualitas interior telur ayam kampung. Dosis suplementasi yang terbaik pada 1,00%.

Katakunci: suplementasi, tepung biji semangka, telur ayam, ayam kampung

Abstract

This study was conducted with the aim of knowing the effect of watermelon seed flour supplementation on the interior quality of native chicken eggs. This biological research was carried out using a completely randomized design (CRD) with 4 treatment doses of supplementation (0; 0.50; 0.75 and 1.00%) and 5 repetitions for each treatment using 5 chickens. Statistical analysis showed that watermelon seed flour supplementation was very significant (p<0.01) had an effect on egg yolk index and egg white height but not significant (p>0.05) had an effect on egg index. The average egg index in this study was 77.19 - 80.31; IKT 0.35-0.45 and egg white height 6.43-8.20mm. This study concluded that watermelon seed flour supplementation could improve the interior quality of free-range chicken eggs. The best supplementation dose was at 1.00%.

Keyword: supplementation, watermelon seed flour, chicken eggs, native chicken

PENDAHULUAN

Indonesia merupakan salah satu negara dengan keunggulan adanya keberagaman genetik ayam sehingga Indonesia menjadi pusat keberagaman genetik ayam lokal tingkat dunia [1]. Indonesia meempunyai keberagaman unggas lokal yang tersebar diberbagai daerah dengan keunggulan dan karakteristik yang berbeda [2]. Unggas lokal yang banyak dikembangkan di Indonesia untuk mencukupi kebutuhan daging dan telur adalah ayam kampung atau biasa juga disebut dengan istilah ayam bukan ras (buras) [3], [4]. Latar belakang terbentuknya ayam kampung yang sekarang terdapat di berbagai daerah yang ada di Indonesia adalah dari ayam jenis *Gallus gallus* (ayam hutan merah) yang di domestikasi. Ayam kampung dikelompokkan menjadi beberapa kelompok diantaranya adalah ayam kampung dengan tujuan penghasil daging (ayam gaok, ayam pelung, ayam nagrak dan ayam sedayu), ayam kampung dengan tujuan menghasilkan telur (ayam kedu, ayam wareng, ayam nunukan dan ayam merawang) dan ayam kampung dengan tujuan petelur sekaligus sebagai pedaging (*dual purpose*) seperti ayam bangkalan, ayam sentul dan ayam olangan [2].

Ayam kampung banyak diminati baik daging maupun telurnya sebab pemeliharaan ayam kampung pada umunya secara tradisional tanpa penggunaan antibiotik [5]. Jumlah populasi ayam kampung belum sebanyak seperti ayam ras dengan berbagai macam alasan baik karena ketersediaan jumlah bibit yang masih jarang ataupun produksi yang tidak maksimal. Keberhasilan usaha peternakan dapat dinilai dari faktor produktifitas dan keuntungan. Komponen dari biaya produksi yang paling banyak dikeluarkan oleh peternak adalah biaya untuk pembelian pakan. Kurang lebih sekitar 70-80% komponen biaya produksi untuk usaha peternakan berasal dari pakan [6]. Kulitas nutrisi pakan erat kaitannya dengan

kuantitas dan kualitas telur yang dihasilkan. Telur merupakan produk pangan yang dijadikan sebagai sumber protein hewani karena mempunyai mempunyai nutrisi dimana susunan asam amino yang ada didalamnya mendekati dengan yang dibutuhkan oleh tubuh manusia. Tujuan dari seleksi telur diantaranya adalah untuk menjamin keamanan produk pangan dan juga untuk kepentingan penetasan [7]. Berbagai upaya untuk mengembangkan ayam kampung ini telah banyak dilakukan dari perbaikan pakan maupun dari perbaikan genetik. Suplementasi tepung biji semangka (TBS) merupakan salah satu upaya yang dapat dilakukan guna mendapatkan kualitas ayam kampung yang optimal.

Semangka termasuk dalam golongan tanaman dari famili *Cucurbitaceae*. *Citrullus lanatus* adalah nama latin dari buah semangka. Biji buah semangka mempunyai kandungan nutrisi yang tinggi. Beberapa jenis asam lemak tak jenuh yang terdapat dalam biji buah semangka adalah oleat, linoleat, stearat dan palmitat. Kandungan nutrien dari biji semangka juga cukup tinggi seperti kandungan energi sebesar 5311,51 kkcal/kg; protein kasar 34,22%; lemak kasar 31,99%; serat kasar 0,10% dan abu 3,64% [8]. Guna mengetahui manfaat dari biji semangka dalam bidang peternakan maka diperlukan adanya penelitian efek suplementasi TBS terhadap kualitas telur ayam kampung secara interior.

METODE PENELITIAN

Penelitian biologis ini dilakukan pada bulan Desember - Januari 2021 di Desa Sukolilo Kecamatan Wajak Kabupaten Malang dengan menggunakan (RAL) Rancangan Acak Lengkap dengan perlakuan dosis suplementasi sebanyak 4 (0; 0,50; 0,75 dan 1,00%) dan ulangan sebanyak 5 kali ulangan dimana untuk setiap perlakuan menggunakan 5 ekor ayam kampung. Bahan dan alat

Penelitian tentang suplementasi TBS ini diantaranya membutuhkan bahan-bahan seperti ayam kampung, pakan konsentrat pabrik, jagung, katul dan tepung biji semangka. Adapun jenis peralatan yang digunakan selama penelitian adalah ember, timbangan, jangka sorong dan cawan petri.

Managemen ayam dan kandang

Sebanyak 100 ekor ayam kampung yang telah berumur 30 minggu dan dalam keadaan sehat digunakan dalam penelitian tentang suplementasi tepung biji semangka ini. Ayam ditempatkan dalam kandang *batteray* dengan ukuran 50 x 40cm dengan ketinggian batteray baian depan 37cm dan 30cm pada bagian belakang. Pakan perlakuan diberikan dengan frekuensi sebanyak 2 kali yaitu jam 07.00 WIB pagi hari dan jam 14.00 WIB. Pemberian pakan perlakuan 40% di pagi hari dan 60% pada siang harinya [5]. Air minum diberikan dengan menerapkan konsep adlibitum. Pakan perlakuan yang digunakan dalam penelitian biologis ini sebagai berikut:

P0: Pakan kontrol + 0,00% TBS P1: Pakan kontrol + 0,50% TBS P2: Pakan kontrol + 0,75% TBS P3: Pakan kontrol + 1,00% TBS

Tabel 1. Komposisi Pakan yang Digunakan dalam Penelitian

Bahan Pakan	Pakan Perlakuan				
Banan I akan	P0	P1	P2	Р3	
Konsentrat (%)	55,51	55,51	55,51	55,51	
Jagung (%)	24,71	24,71	24,71	24,71	
Bekatul (%)	17,64	17,64	17,64	17,64	
Mineral (%)	1,89	1,89	1,89	1,89	
Premik (%)	0,25	0,25	0,25	0,25	
TBS (%)	0,00	0,50	0,75	0,10	

Keterangan: perhitungan dilakukan dengan mengacu pada petunjuk penggunaan pakan pabrikan

Tabel 2. Kualitas	nutrisi	pakan	perlakuan
-------------------	---------	-------	-----------

Nutrient	Bahan Pakan/ Pakan				
Nutrient	Jagung ¹	Bekatul ¹	Konsentrat ²	Biji semangaka³	Pakan Perlakuan4
Protein kasar (%)	8.50	12.20	36.00	34.22	15.77
Lemak kasar (%)	3.80	11.00	5.00	31.99	5.28
Serat kasar (%)	2.20	4.10	8.00	0.10	3.92
Abu (%)	1.50	6.90	35.00	3.63	10.70
Calcium (%)	0.02	0.05	11.00	-	2.74
Prhosporus total (%)	0.28	1.31	1.00	-	0.63

Sumber: ¹ NRC (1994), ² Leaflet konsentrat Ayam Petelur SLC (Super Layer Konsentrat) PT.Cargill, ³berdasarkan (Ausi dan barliana, 2016) [8] ⁴berdasarkan perhitungan

Parameter pengukuran

a. Indeks telur

Pengukuran nilai indeks telur dilakukan dengan cara membandingkan antara lebar dari sebutir telur dengan panjang telur. Perhitungan nilai indeks telur menerapkan rumus perhitungan sebagai berikut:

$$Indeks Telur = \frac{Lebar telur (cm)}{Panjang telur (cm)}$$

b. Indeks kuning telur (IKT)

Pengukuran nilai indeks kuning telur dilakukan dengan cara membuat perbandingan antara tinggi dari kuning telur dengan diameter dari kuning telur. Perhitungan nilai indeks kuning telur menerapkan rumus perhitungan sebagai berikut:

Indeks Kuning Telur (IKT) =
$$\frac{\text{Tinggi kuning telur (mm)}}{\text{Diameter kuning telur (mm)}}$$

c. Indeks putih telur (IPT)

Pengukuran nilai indeks putih telur dilakukan dengan cara melakukan pengukuran tinggi, lebar dan panjang dari putih telur. Perhitungan indeks putih telur menerapkan rumus perhitungan sebagai berikut:

$$Indeks Putih Telur (IPT) = \frac{T}{\frac{1}{2}(L1 + L2)}$$

Keterangan:

T = Pengukuran pada tinggi dari putih telur (mm)

L1 = Pengukuran pada lebar dari putih telur (mm)

L2 = Pengukuran pada panjang dari telur (mm)

Analisis statistik

Penelitian biologis ini menggunakan (RAL) Rancangan Acak Lengkap dengan jumlahnya perlakuan sebanyak 4 perlakuan dan jumlah ulangan sebanyak 5 kali ulangan. Apabila hasil analisis menunjukkan adanya perbedaan pengaruh baik nyata atau sangat nyata maka berikutnya akan dilakukan uji lanjutan menggunakan uji Duncan's, dengan menerapkan rumus berikut:

$$Y_{ij} = \mu + \delta_i + \epsilon_{ij}$$

Catatan:

Y_{ii} = nilai dari hasil pengamatan pada perlakuan ke-I dan pada ulangan ke-j

μ = rerata (nilai tengah umum)

δ_i = nilai yang didapatkan dari pengaruh perlakuan ke-i

= pengaruh galat dari pengamatan pada perlakuan ke-i dan pada ulangan ke-j

i = 1, 2, 3, 4, 5i = 1, 2, 3, 4, 5

HASIL DAN PEMBAHASAN

Analisis statistik dari data hasil penelitian efek suplementasi TBS terhadap kualitas interior telur ayam kampung tersaji pada Tabel berikut.

Tabel 3. Kualitas Interior Telur Ayam Kampung dengan Suplementasi Tepung Biji Semangka

Perlakuan	Variabel Penelitian				
remakuan	Nilai indeks telur	Nilai IKT	Tinggi putih telur (mm)		
P0	$77,19 \pm 2,70$	$0.38^a \pm 0.01$	$6,43^a \pm 0,32$		
P1	$78,\!86\pm4,\!32$	$0,\!39^a\pm0,\!33$	$6,\!53^a\pm0,\!34$		
P2	$80,31 \pm 1,53$	$0,35^a\pm0,03$	$7,\!20^a\pm0,\!75$		
Р3	$78,15\pm1,68$	$0,45^{\rm b}\pm0,03$	$8,\!20^b\pm0,\!55$		

Notasi yang tidak sama pada kolom yang sama menunjukkan adanya pengaruh perlakuan yang sangat nyata (P<0,01) Nilai indeks telur

Berdasarkan hasil analisis statistik suplementasi TBS tidak nyata (p>0,05) pengaruhnya terhadap nilai dari indeks telur. Nilai dari indeks telur pada penelitian ini berkisar antara 77,19-80,31. Indeks telur penting untuk dilakukan pengukuran sebab berkaitan dengan tingkat keberhasilan dari sebuah penetasan [9]. Hasil dari nilai indeks telur dalam penelitian ini termasuk kategori normal. Nilai indeks telur ayam dikatakan normal berkisar antara 78-79 [10].

Indeks telur merupakan gambaran secara umum untuk melihat kualitas dari sebutir telur. Besar kecilnya indeks telur erat kaitannya dengan ukuran telur [11]. Besarnya ukuran telur sangat dipengaruhi oleh berapa besar jumlah energi yang dikonsumsi [12]. Ukuran telur dengan kategori cukup yaitu tidak sangat kecil atau sangat besar adalah telur yang ideal untuk dijadikan sebagai telur tetas [4].

Nilai indeks kuning telur (IKT)

Analisis statisik menunjukkan bahwa suplementasi TBS sangat nyata (p<0,01) memberikan pengaruh terhadap nilai indeks kuning telur. Nilai indeks kuning telur pada penilitian ini adalah 0,35-0,45. Indeks kuning telur erat kaitannya dengan kualitas pakan. Kandungan nutrisi yang berperan dalam besar kecilnya angka indeks kuning telur adalah protein dan lemak [5], [12], [13]. Protein dan lemak berperan penting dalam menyusun komponen isi telur dan bobot telur [14].

Tabel 3 menunjukkan bahwa suplementasi TBS dapat meningkatkan nilai indeks kuning telur. Suplementasi tepung biji semangka ini dapat meningkatkan indeks kuning telur sebab dalam biji semangka terdapat kandungan asam lemak tak jenuh yang tingi serta kandungan energi dan proteon yang tinggi [8]. Penggunaan aditif alami mampu untuk memaksimalkan metabolisme karbohidrat dan memanfaatkan dan mensintesis glukosa yang dijadikan sebagai sumber energi [11]. Energi dalam tubuh ayam akan dimanfaatkan untuk kebutuhan hidup pokok, pertumbuhan dan produksi [12]. Asupan energi dalam tubuh ternak yang berlebihan akan dijadikan sebagai cadangan energi berupa lemak tubuh yang berikutnya akan dimanfaatkan sebagai prekursor dalam pembentukan kuning telur [5].

Nilai tinggi putih telur

Analisis statisik menunjukkan bahwa suplementasi TBS sangat nyata (p<0,01) pengaruhnya terhadap nilai tinggi putih telur. Nilai tinggi putih telur dari penilitian ini adalah 6.43-8.20mm. Kualitas telur dibedakan menjadi 3 kriteria yaitu telur dengan kualitas AA, kualitas A dan kualitas B. telur dengan kualitas AA adalah telur yang putih telurnya dalam kondisi kental [7]. Tinggi putih telur erat kaitannya dengan struktur albumin telur. Telur segar mempunyai struktur albumin yang masih baik sehingga albumin berbentuk kental [15].

Tabel 3 menunjukkan bahwa suplementasi tepung biji semangka dapat meningkatkan tinggi putih telur. Tinggi putih telur erat kaitannya dengan kandungan protein dalam pakan. tepung biji semangka mempunyai kandungan protein kasar sebesar 34,22% sehingga suplementasi tepung biji semangka dapat meningkatkan kandungan protein dalam pakan [8].

KESIMPULAN

Penelitian ini secara ringkas dapat disimpulkan bahwa suplementasi TBS mampu meningkatkan kualitas interior telur ayam kampung. Dosis suplementasi yang terbaik pada 0,10%.

SARAN

Disarankan untuk melakukan analisa laboratorium yang lebih lengkap terkait kandungan nutrien yang ada pada TBS.

DAFTAR PUSTAKA

- [1] S. Anas, D. Rohmadi, F. Palobo, and E. Djaya, "Kajian Optimalisasi Penggunaan Bahan Pakan Lokal untuk Pembibitan Ayam Kampung di Kabupaten Gorontalo," *Jurnal Pertanian Agros*, vol. 22, no. 1, pp. 13–21, 2020.
- [2] N. Pratiwi, T. Sartika, and Komarudin, "Pengaruh Warna Kerabang Telur Terhadap Kualitas Telur Ayam KUB-2," in Seminar Teknologi dan Agribisnis Peternakan VIII-Webinar: "Peluang dan Tantangan Pengembangan Peternakan Terkini untuk Mewujudkan Kedaulatan Pangan," 2021, pp. 24–25.
- [3] N. Haryuni, A. Lidyawati, B. Khopsoh, and N. Hasanah, "Pengaruh Level Energi Dalam Pakan Terhadap Kualitas Spermatozoa Ayam Kampung Secara Mikroskopis," *Jurnal Ilmu Peternakan Terapan*, vol. 4, no. 1, pp. 7–13, Dec. 2020, doi: 10.25047/jipt.v4i1.2342.
- [4] N. Haryuni, A. Lidyawati, and B. Khopsoh, "The Effect of Vitamin E Selenium Addition Level in Feed Against Fertility and Hatching Eggs of Sentul Chicken Crosses With Laying Hens," *Jurnal Ilmiah Peternakan Terpadu*, vol. 7, no. 3, pp. 287–292, 2019, doi: http://dx.doi.org/10.23960/jipt.v7i3.p287-292.
- [5] N. Haryuni, Hartutik, E. Widodo, and S. Wahjuningsih, "Interaction effect of vitamin E-selenium supplementation and metabolic energy on reproductive performance of Joper Breeders," *Indonesian Journal of Animal and Veterinary Science*, vol. 26, no. 3, pp. 124–131, 2021, doi: http://dx.doi.org/10.14334/jitv.v26i3.2842.
- [6] N. Haryuni, "Analisis Kinerja Finansial Kenaikan Harga Dedak Padi Terhadap Tingkat Pendapatan Peternak Ayam Petelur Di Kabupaten Blitar Jawa Timur," *Jurnal Ilmiah Fillia Cendekia*, vol. 3, no. 1, pp. 10–15, 2018, doi: https://doi.org/10.32503/fillia.v3i1.163.
- [7] N. Haryuni, E. Widodo, and E. Sudjarwo, "Aktivitas Antibakteri Jus Daun Sirih (Piper bettle linn) Terhadap Bakteri Patogen Dan Kualitas Telur Selama Penyimpanan," *TERNAK TROPIKA Journal of Tropical Animal Production*, vol. 16, no. 1, pp. 48–54, Jun. 2015, doi: https://doi.org/10.21776/ub.jtapro.2015.016.01.8.
- [8] Y. Ausi, M. I. Barliana, F. Farmasi, and U. Padjadjaran, "Farmaka Farmaka," *Jurnal farmaka*, vol. 14, no. 2, pp. 273–280, 2016.
- [9] T. Kostaman, S. Sopiyana, B. Dewantoro, and P. Soewandi, "Persentase Fertilitas dan Daya Tetas Ayam Cemani dan White Leghorn Berdasarkan Ukuran Bobot Telur," *Jurnal Agripet*, vol. 20, no. 2, pp. 118–125, 2020, [Online]. Available: http://jurnal.unsyiah.ac.id/agripet%0AVol.
- [10] T. Setiawati, R. Afnan, and N. Ulupi, "Performa Produksi dan Kualitas Telur Ayam Petelur pada Sistem Litter dan Cage dengan Suhu Kandang Berbeda," *Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan*, vol. 4, no. 1, pp. 197–203, 2016, doi: 10.29244/4.1.197-203.

[11] H. R. Surya1, J. R. Manullang2, and T. P. Daru3, "Pemanfaatan Daun Katuk (Sauropus Androgynus) terhadap Kualitas Telur Konsumsi di CV. Zafa Anugrah Mandiri Kabupaten Kutai Kartanegara," *Rekasatwa, Jurnal Ilmiah Peternakan*, vol. 3, no. 2, pp. 1–10, 2021, [Online]. Available: http://www.riset.unisma.ac.id/index.php/REKAPET/article/view/13623.

- [12] N. Haryuni, Hartutik, E. Widodo, and S. Wahjuningsih, "Effect of energy and dose of vitamin E selenium on improving the reproduction performance of Joper brood stock," *E3S Web of Conferences*, vol. 335, p. 00036, Jan. 2022, doi: 10.1051/e3sconf/202233500036.
- [13] E. Hartono, M. F. Wadjdi, and O. R. Puspitarini, "Pengaruh Pemberian Bio Organik Suplemen dalam Air Minum Ayam Petelur Isa Brown Terhadap Indeks Kuning Telur, Indeks Putih Telur dan Haugh Unit," *Junal Rekasatwa Peternakan*, vol. 2, no. 1, pp. 73–77, 2019.
- [14] N. Haryuni, E. Widodo, and E. Sudjarwo, "Efek Penambahan Jus Daun Sirih (Piper bettle linn) Sebagai Aditif Pakan Terhadap Peforma Ayam Petelur," *BRILIANT: Jurnal Riset dan Konseptual*, vol. 2, no. 4, pp. 429–433, 2017, doi: http://dx.doi.org/10.28926/briliant.v2i4.100.
- [15] L. Lestari, S. M. Mardiati, and M. A. Djaelani, "Kadar Protein, Indeks Putih Telur, dan Nilai Haugh Unit Telur Itik Setelah Perendaman Ekstrak Daun Salam (Syzygium polyanthum) dengan Waktu Penyimpanan yang Berbeda pada Suhu 4°C The Protein content, Egg White Index and Haugh Unit Value of Duck Egg a," *Buletin Anatomi dan Fisiologi*, vol. 3, no. 1, pp. 39–45, 2018, [Online]. Available: ejournal2.undip.ac.id/index.php/baf/index.